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SUMMARY

Several toroidal configurations applicable to missile and space-
vehicle liquid storage systems were oscillated to study the natural
frequencies of the antisymmetric modes of contained liquids over a
range of liquid depths and tank sizes. Natural frequencies were obtained
for tank oscillations parallel to the free surface of both vertical and
horizontal tank orientations.

The data are presented in terms of dimensionless parameters which
are obtained by relating experimentally determined natural liquid fre-
quencies to analytical expressions developed through consideration of
the physics of the problem and from existing solutions for liquids in
tanks having similar boundaries at the liquid surface. The experimental
results obtained for the toroids indicate that these parameters are
applicable to the prediction of the natural frequencies of fluids in
toroids of general geometry and size.

INTRODUCTION

In missiles or space vehicles employing liquid-fueled propulsion
systems or large volumes of liquids for life support, the responses of
the system to motions of the contained liquids may greatly affect the
dynamic stability of the entire vehicle. The magnitudes of these
responses can increase greatly if the natural liquid frequencies are near
frequencies of external periodic forces which may be induced by control
impulses or by periodic structural deformations of the vehicle. It is
imperative, therefore, that methods for accurately predicting the natural
frequencies of these liquids in propellant tank configurations of interest
be available before the tank is incorporated into any vehicle design.

The natural frequencies of the antisymmetric modes are of particular
interest since the liquid motions in these modes involve lateral shifts
in the liquid center of gravity. Some results of experimental and



analytical studies of the natural frequencies and mode shapes of liquids
in spheres and right circular cylinders are given in reference 1. Recent
studies, however, indicate the desirability of employing toroidal storage
tanks for propellants or liquids for life-support systems in some future
vehicles, but no information on the natural frequencies of liquids in
such tanks is presented in the available literature.

The purpose of this paper 1s to report the results of an experi-
mental investigation of the natural frequencies and mode shapes of the
antisymmetric modes of liquids contained in toroidal tanks. The fre-
quencies and mode shapes were obtained for tanks having various major
and minor radii, liquid depths ranging from empty to full, and different
crientations of the tanks with respect to the direction of the applied
oscillation. The natural frequencies are presented as dimensionless
parameters to permit application of the results to toroidal tanks of
practical interest.

SYMBOLS
g acceleration due to gravity
h liquid depth
h, liquid depth in an annular right circular cylinder having the

same liquid-surface geometry and ylelding liquid volume
equivalent to that contained in a horizontal toroid at liquid
depth h (fig. 7)

Jy' first derivative of the Bessel function of the first order and
first kind

n mode of liquid oscillation

r minor radius of toroid (fig. 1)

R major radius of toroid (fig. 1)

Ti, Ty inner and outer radii of liquid surface for liquids in hori-

zontal toroids (fig. T)

Yl' first derivative of the Bessel function of the first order
- and second kind
€ nth zero of Jl'
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angle measured from the vertical to the radius of length

R

that terminates at the liquid surface of vertical tanks

(fig. 8)

frequency parameter for nth mede of a liquid in a horizontal
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frequency parameter for the nth transverse mode of a liquid

in a vertical toroidal tank, anr/g

angle between the vertical and the radius to the point of

intersection of the liquid surface with the peripheral
circle of vertical tanks (fig. 8)

frequency parameter for the nth longitudinal mode of a liquid
in regions of a vertical toroid (fig. 1); for regions A and c,
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experimental natural circular frequency of oscillation of

liquids in nth mode

analytical natural circular frequency of oscillation of
in nth mode

liquids




APPARATUS

Description of Models

The models of the toroidal tanks studied in these tests consisted
of five configurations, each of which was oriented in three different
ways with respect to the direction of oscillation. These orientations
are shown in the sketch in figure 1, which also includes the tabulated
dimensions of the models. Orientations of the tanks for the various
liquid modes were as follows:

Mode Plane of major Direction of oscillation with
torus radius R respect to plane of major radius
Horizontal Horizontal Parallel
Longitudinal Vertical Paraliel
Transverse Vertical Perpendicular

In 8ll modes the direction of oscillation was in a plane parallel to the
liquid surface.

All models were constructed of clear Plexiglas to permit visual
observation of the liquid motion. In all cases water was used as the
liquid.

Mechanical Shaker

The models were mounted on a support platform which was suspended
in pendulum fashion from overhead beams. Oscillations of the models
were induced by means of a mechanical shaker which was directly con-
nected to the support platform as shown in figure 2. The mechanical
shaker, described fully in reference 2, consists of a slider-crank
mechanism driven by a variable-speed motor and designed so as to provide
a means for conveniently varying the frequency and amplitude of the
reciprocating motion applied to the platform. A tachometer, also shown
in figure 2, was attached to the drive shaft of the motor and provided
a means for directly obtaining the excitation frequency. The shaker
had an additional design feature which permitted a rapid shutdown of
the driving motion so that the liguid modes excited at a given frequency
could be studied during the decay of the fluid motions.




TEST PROCEDURE

The testing technique involved inducing translatory oscillations of
the models over a range of frequencies to obtain the natural frequencies
of the contained liquid. The procedure was repeated over the full range
of liquid depths. In measuring the lower mode natural frequencies for
all models except toroid 5, the mode in question was induced by means of
the mechanical shaker and, upon full development of the wave form, the
platform motion was stopped and the frequencies were obtained by visually
timing the low-amplitude oscillations of the liquid during the decay of
the wave form. In the cases of the higher modes, for toroids 1 to k4,
the excitation amplitudes were maintained at low levels and the natural
frequencies were taken as those frequencies yielding maximum liquid
response. In these cases, the frequencies were read directly from the
tachometer. Inasmuch as toroid 5 was too large for installation on the
shaker platform, the testing technique for this toroid was modified. The
toroid was mounted on rollers and manually excited to induce the desired
liquid mode shape. All liquid modes of this toroid were obtained by
visually timing the low-amplitude liquid oscillations during the decay
of the fully developed wave form. Representative mode shapes of the
liquid in half-filled toroids mounted horizontally and vertically are
shown in figures 3 to 5. Data were taken for all modes visually detected
with sufficient clarity for their definition.

DATA REDUCTION

A sample of the test results is given in figure 6, which presents
some of the experimental data taken on toroid 3. This figure shows the
variation of the measured natural frequencies of the first two liquid
modes in cycles per second with fullness ratio for the three tank orien-
tations. In order to apply the results of the experimental tests to
toroids of variable geometry, an extension of these results to permit
the prediction of natural liquid frequencies in toroids of different
dimensions is desired. The ideal method, one using dimensionless param-
eters which express the ratio of the experimentally determined natural
liquid frequencies to simple, exact, closed-form solutions for the
natural liquid frequencies, is not possible at this time since no such
exact solutions are known to exist. It is possible, however, that cer-
tain alternate expressions may be derived which, when similarly applied,
will yield frequency parameters independent of tank dimensions. The
existence of such expressions is suggested by recognition of the fact
that at various liquid depths in a toroid, the liquid has physical
boundaries relatively similar to those of liquids in containers for
which information concerning natural fluid frequencies is available



(e.g., cylinders, spheres, and U-tubes). For some such containers,
either simple, exact, closed-form solutions exist for the natural liquid
frequencies, or a combination of pertinent variables has been proven
experimentally to yield frequency parameters that are essentially inde-
pendent of tank dimensions. The derivation of the toroidal frequency
parameters based upon these expressions is presented in the following
sections for each mode of oscillation. It should be noted that the fre-
quency parameters used in the reduction of the experimental data are not
the only parameters which will nondimensionalize the data. Several
parameters for each mode were investigated, and those yielding the best
results were selected for use.

Horizontal Modes

The frequency parameter for the horizontal modes was selected as
the ratio of the experimentally determined liquid frequencies to the
natural frequencies of liquids contained in an upright annular circular
cylinder having dimensions r; and r, (the inner and outer radii of
the liquid surface; see sketch in fig. 7) and a liquid depth h. neces-
sary to produce a liquid volume equal to the volume of liquid contained
in the toroid. The exact expression for the liquid frequencies Qp in
such an annular cylinder, given by reference 3, is

g Be
9 = [ Vo temhiz=vq (1)

o

where n 1is the mode of liquid oscillation, g 1s acceleration due to
gravity and v, is the nth root of the equation

wow (E)

Yl'(V) Y1'<£1 v)

To

=0 (2)

The first four roots of this equation are plotted in figure 7 as a func-

r-
tion of ;l. The resulting parameter for the horizontal modes, denoted

)\nzwn_.a)n _I.‘Q._l______._l____. (5)
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Vertical Modes

The distinct differences in the geometry of the liquid boundaries
for various depths in vertical toroids suggest the division of the tanks
into three separate regions to permit a comparison of the experimental
data for toroidal tanks of various geometry and size on the same non-
dimensional fullness basis. These regions are designated A, B, and C
and are indicated on figure 1.

Transverse.- In vertical toroidal tanks undergoing transverse oscil-
lations,” the liquids in regions A (0 < h< 2r) and C (2BR<h < 2(R + r))
have boundaries which are somewhat similar to those of liquids in spheres
or horizontal cylinders undergoing transverse oscillations. It has been
theoretically determined (ref. 4) and experimentally verified (ref. 1)
that for a sphere or a horizontal cylinder undergoing transverse oscil-
lations a frequency parameter o, of the form

On =%\/—‘§ (&)

will insure satisfactory nondimensionalization of the natural frequencies
of liquids contained in such tanks. Because of the similarity in the
liquid boundary conditions, this parameter was selected for use in
regions A and C.

In region B (2r < h < 2R) the liquid boundary is somewhat similar
to that of liquids in an upright circular cylinder. The exact expres-
sion for the natural frequencies of liquids in an upright circular
cylinder of radius a, given in reference 5, is

én - \/en g tanh(% en> (5)

where h 1is the depth of liquid in the cylinder and e is the nth
zero of the first derivative of the Bessel function of the first order
and first kind. In the treatment of the liquid in region B as though
it were contained in a cylinder of radius r, the reasonable assumption
is made that the value of the equivalent liquid depth is sufficiently

large to insure that tanh(% €n> approaches unity (tanh(% €l> - 1.0

at % = 1.6; tanh(% 62) 1.0 at % = 0.6 ). With this assumption,

equation (5) reduces to

—~
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It may be seen from this expression that the prime variables for
nondimensionalization are g and r - the same variables that con-
stitute the frequency parameter in regions A and C (eq. (4)). The
frequency parameter for the upright transverse modes, therefore, is
made to be consistent throughout the depth range; that is,

o, = wnJE; (7)

Iongitudinal.- The first longitudinal mode of the liquid in
regions A and C is nondimensionalized by taking the ratio of the experi-~
mental natural frequency to the natural frequency of a simple pendulum
whose length is equal to the distance from the center of the toroid to
the center of mass of a mass distributed uniformly along an arc of the
peripheral circle subtended by the liquid surface. (See figs. 8(a) and
8(c).) The expression for the natural frequency of such a pendulum is

O = . — (6)
(R + r)2ind

¢

where ¢ 1is the angle between the vertical and the radius to the point
of intersection of the fluid surface with the peripheral circle. The
resulting parameter for the first mode V¥ 1is

i R+r [sin @
Y = —= = (9)
1 9 “ﬁ.J = J 3

Nondimensionalization of the higher modes in these two toroidal regions

was accomplished through the consideration of the relative similarity of
the liquid boundaries to those of liquids contained in spheres of radius
R + r. The resulting frequency parameter YV, is then

R+r
g

Vp = (n>1) (10)

First-mode liquid motion in region B is much like that in the
circular-arc tube of small cross section illustrated in figure 8(b).
The natural [{requency of the liguid in such a tube is

g [sin 6
Q. = |2 11
1 r,’ 5 (11)




where R 1is the radius to the center line of the tube and © is the
angle between the vertical and the radius R which terminates in the
liquid surface. The dimensionless frequency parameter ¥, selected
for the first mode is the ratio of the experimental natural liquid fre-
quency to the frequency expression given by equation (11), or

~ A [R[ O
1 Ql lei; sin @ (12)

Nondimensionalization of the higher modes is accomplished, as with the
transverse modes in this region, through the consideration of the rela-
tive similarity of the liquid boundaries to the boundaries of liquids
contained in an upright circular cylinder. The order of the analogous
cylindrical frequency is decreased by 1 since the manometer-type mode

not present in the upright cylinder was considered as the fundamental
mode for this region. Again, if it is assumed that the equivalent liquid

depth is sufficiently large to insure that tanh(é €n> approaches unity
in the natural-frequency expression (eq. (6)), the frequency parameter is

1
€n-1

¥ =@y [T (n>1) (13)

The liquid frequency parameters for the various toroidal tank
orientations and the sources for the corresponding analytical expres-
sions are summarized in table I.

DATA PRESENTATION AND DISCUSSION OF RESULTS

The frequency parameters are plotted as a function of fullness
ratio h/2r for the horizontal toroidal tanks and as a function of
h - 2r
2(R - r)
ELé;£§i> for the vertical toroidal tanks. Data for each mode of a given

T

region fullness ratio (region A, h/2r; region B, 3 region C,

configuration are presented in this form in figures 9 to 11. The data
obtained for the higher modes of the small models were limited because
the mode shapes could not be clearly defined in some cases.

Modes of Horizontal Toroids

The experimental data for the first four modes
horizontal toroidal tanks are presented in figure 9 i
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frequency parameter A,. The values of this frequency parameter are

plotted as a function of the fullness ratio. The figure indicates that
at a given fullness ratio, the frequency parameter for a given mode is
the same for all toroids examined. It appears, therefore, that the fre-
quency parameter A, 1s independent of the tank dimensions (both actual
size and geometric ratio R/r) and applicable for predicting the natural
liquid frequencies in any horizontal toroidal tank.

It is of interest that, except at the near-full and near-empty con-
ditions, the values of A, are in the neighborhood of unity, which

indicates that the analytical expression for the frequency (eq. (1)) is

a good approximation to the natural frequency of the liquid in horizontal
toroids. Both this expression and the frequency parameter derived there-
from may be readily utilized to obtain the liquid frequencies by using
the values of vy presented in figure 7 for the first four modes.

Transverse Modes of Vertical Toroids

The results obtained from the transverse oscillations of the vertical
toroids are presented in figure 10. The frequency parameter o, is
shown as a function of fullness ratio of the three toroidal regions for
the first two liquid modes. As in the case of the liquid modes in hori-
zontal toroids, the nondimensional data obtained for a given transverse
mode of the vertical toroids may be represented by one curve. It appears,
therefore, that the resulting curve is applicable for the prediction of
the natural liquid frequencies in vertical toroids of any size and
geometry undergoing transverse oscillations.

Longitudinal Modes of Vertical Toroids

Liquid frequency-depth relationships for the longitudinal modes of
vertical toroids are presented in figure 11 in terms of the frequency
parameter V,. The values of this parameter for each of the three regions
are plotted separately as a function of the region fullness ratio. The
results for region A are presented in figure 11(a) and indicate that for
a given fullness ratio, the frequency parameter for the first mode ¥
is the same for all toroids examined. The figure also shows that the
values of ¥, are near unity throughout the region, which indicates
that the expression given by equation (8) essentially predicts the first

longitudinal liquid frequency in region A of vertical tanks.

The frequency parameter developed for the higher liquid modes in
region A, based upon an expression involving the variables necessary to
nondimensionalize satisfactorily the transverse modes of spheres and
horizontal cylinders, is also presented as a function of region fullness
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ratio in figure 11(a). The data show that this parameter, WV, (where
n > 1), while dimensionless, is dependent on the ratio R/r, but inde-
pendent of tank size. The effect of R/r on the second mode, however,
appears to be negligible. The faired data of the higher modes show that
the value of the frequency parameter at a given liquid depth increases
with this ratio R/r.

The results of the frequency data obtained in region B are shown in
figure ll(b) and indicate that the frequencies for the three modes
examined in this region are readily nondimensionalized by the parameters
selected. The natural-frequency parameter V¥, (n =1, 2, 3) has the
same value for all toroids examined at a given region fullness ratio and
a given mode. Thus it may be concluded that the parameters are inde-
pendent of the tank dimensions and appliceble in the prediction of the
longitudinal liquid frequencies in the midregion of vertical toroids of
practical interest. Furthermore, since the parameters are near unity
except at the near-full condition, the analytical expressions for the
frequencies may be used to obtain approximate natural frequencies through-
out most of the depth range of region B.

The variation of the frequency parameters V¥, with fullness ratio
for region C is presented in figure 11(c). As was the case for region A,
the frequency parameters selected appear to be sufficient to reduce the
data to a family of curves indicating the dependency of the natural fre-
quencies on R/r. Thus far, no effective parameter has been found which
is useful for combining the effects of variations of both tank size and
geometry in this region. The data for a given geometric ratio may be
extended directly to geometrically similar tanks.

CONCLUSIONS

Frequency data have been obtained and parameters synthesized for
liquids in toroidal tanks of different sizes and geometric ratios R/r
(where R 1is the major radius and r the minor radius of the toroid).
These parameters are developed for tanks oriented in three ways with
respect to the direction of oscillation and have been found to be inde-
pendent of tank size and in most cases independent of the geometric
ratio R/r. These parameters are believed to be applicable in the pre-
diction of the natural frequencies of fluids in toroids of practical
interest in missile and space-vehicle liquid-storage systems.

The natural frequencies of liquids in horizontal toroids in general
may be accurately predicted by the analytical expression for the modal
frequencies of liquids in annular cylinders having the radisl dimensions
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of the toroidal liquid surface and a depth yielding a volume equivalent
to the volume of liquid in the toroid.

The transverse modes of liquids in the upper and lower regions of
vertical toroids behave in a manner similar to modes of liquids in
spheres, whereas the modes in the midregions behave in a manner analogous
to modes of liquids in deep upright circular cylinders.

For the longitudinal modes of liquid in vertical toroids no method

has been found to achieve complete nondimensionalization with respect

to both size and geometry, but as expected, it was found in all cases
that natural-frequency data for geometrically similar toroids can be
rendered dimensionless and thus the effects of tank size can be isolated.
The data presented indicate that the degree of dependence of the natural
frequencies on R/r 1is a function of both liquid depth and the order of
the liquid mode.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., July 15, 1960.
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TABLE I.- SUMMARY OF NONDIMENSIONAL FREQUENCY PARAMETERS

FOR LIQUIDS IN TOROIDAL TANKS

15

Orientation Region Mode Parameter Source
Horizontal All A1l A = Io VL hl Annular circular
g Vn ta.nh(r—c Vn) cylinder
o)
A, C All Op = Wy -Z— Sphere of radius r
Vertical
transverse
B Al On = @, L Circular cylinder
g of radius r
: ,R +r [sin @
First = —_— Simple pendulum
¥, = Wy g ¢ ple p
A, C
All n>1 VY = Rtr Sphere of radius
g R+r
Vertical
longitudinal Firet " - R [ @ Cireular-arc tube
1 g\|/sin 6
B
All n>1 & ¥ = Wy r 1 Circular cylinder of
€ €p-1 radius r

8por convenience, values of €

€1

]

1.8k

5.331
8.536
11.706

o are listed below:




14

Figure l.- Sketch showing orientation of toroidal tank and dimensions of
test configurations.

—

Region C -

Region B

Horizontal excitation

Toroid | R,in. | r,in.
| 40 ] 40

2 79139

3 (11959

4 [I19 ]| 39

S |160] 80

Region A "U
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(a) First mode.

(¢) Third mode. 1-60-4306

Figure 3.- First three modes of liquid in a horizontal toroid.



(a) First mode.

Figure 4.- First

(b) Second mode.

two transverse modes of liquid
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(c) Third mode. L-60-4308

Figure 5.- First three longitudinal modes of liquid in a vertical toroid.
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40
36 Horizontal toroid
32+

Equivalent annular
28 cylinder

L.

') 5 (5 )

¥y (v) Ylv(r_i V)

Figure T7.- First four roots of the equation




21

Peripheral circle

Circulaor-arc tube

{c) Region C.

ch defining symbols used in treatment of longitudinal
liquid meodes in vertical toroidal tanks.
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Figure 9.- Variation of liquid frequency parameter

Ap = Wy To 1 ____;L___—T with depth for hori-

g Vn Eﬁ =.' -
tanh(ro Vn/

zontal toroidal tanks.
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8F R, in. 1, in. B
O 40 40
o 79 39
4F O 119 59 -
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0O 160 80
O 1 | 1 ] 1 I 1 J ] 1 ]
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Regional fullness ratio

Figure 10.- Variation of liquid frequency parameter On = W, g with

depth for transverse modes of vertical toroidal tanks.
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Figure 11.- Variation of liquid frequency parameters with depth for
longitudinal modes of vertical toroidal tank regions.
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